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We present a theoretical formalism that describes the nonlinear phase shift acquired by a laser beam in
passing through an anisotropic material oriented at an arbitrary angle with respect to the beam. We use this
theory to analyze the results ofz-scan measurements made on layered composite materials. Samples are
constructed from alternating, subwavelength-thick layers of titanium dioxide and the conjugated polymer poly
(p-phenylenebenzobisthiazole!. Effective-medium theory predicts an enhancement of 35% in the third-order
susceptibility when the electric field is polarized normal to the layers. Good agreement between theory and
experiment is observed.

PACS number~s!: 42.65.An, 42.70.Nq

I. INTRODUCTION

The practical development of nonlinear optical devices is
often hindered by the lack of materials with the proper com-
bination of desirable properties such as large nonlinear re-
sponse, short response times, and high damage thresholds.
For this reason, much effort has recently been directed to-
ward the development of materials possessing these desirable
properties. The most common approach for doing so is to
search for materials, or to synthesize new materials, that pos-
sess these desirable attributes as inherent properties. An al-
ternative approach is to fabricate composites from one or
more constituents in such a manner that the composite ma-
terial possesses attributes superior to those of its constituent
materials. The second approach underlies the work reported
in this paper.

There is a substantial history of work aimed at under-
standing the optical properties of composite materials. Max-
well Garnett@1#, for example, presented in 1905 a model that
successfully explained many of the linear optical properties
of glasses containing metallic particles. More recently, Jain
and Lind @2# measured large third-order nonlinear optical
susceptibilities in glasses doped with CdSSe crystallites;
Ricard, Roussignol, and Flytzanis@3# measured large third-
order nonlinearities in metal colloids, especially at frequen-
cies near the surface plasmon resonance. Subsequently, ex-
tensive research has investigated the third-order nonlinear
optical susceptibilities of composite materials containing ei-
ther metallic@4–8# or semiconductor@9–13# particles. Re-
lated theoretical work has dealt both with the situation of
randomly interdispersed composite materials@14–16# and
with more exotic geometric structures such as those with
fractal structures@17,18#.

A different sort of insight into the development of com-
posite nonlinear optical materials was presented by two of
the present authors, who noted that under proper conditions
the nonlinear susceptibility of a composite material can ex-
ceed those of the constituent materials from which the com-
posite is formed@19,20#. This result was demonstrated by
explicit calculations both for the geometry of inclusion par-
ticles embedded in a host material@19# and the geometry of

alternating layers of two materials@20#. We recently verified
the prediction of enhanced nonlinear optical response for the
case of a layered composite material and published a brief
account of this work@21#. The composite material was com-
prised of alternating layers of titanium dioxide and the con-
jugated polymer poly (p-phenylenebenzobisthiazole!. The
experimental technique used to determine the nonlinear op-
tical susceptibility entailed measuring the nonlinear contribu-
tion to the phase shift acquired by a laser beam in passing
through the material as a function of the angle of incidence
of the laser. The primary intent of the current paper is to
present a detailed account of the mathematical procedure
used in analyzing the results of this experiment. However,
for reasons of completeness, we also present a brief summary
of our experimental procedure and our experimental results.

II. THEORETICAL FORMALISM

The starting point for the theoretical formalism is the
macroscopic Maxwell equations

c“3E1Ḃ50, ~1a!

c“3B2Ḋ54pṖNL, ~1b!

“•B50, ~1c!

“•D524p“•PNL. ~1d!

HerePNL is the nonlinear polarization andD is the displace-
ment field containing the linear polarizationPL, i.e.,
D5E14pPL. We neglect any magnetic effects and have
takenH5B. From these equations we derive, in the usual
way, the wave equation for the electric field

¹2E2
1

c2
D̈2“~“•E!5

4p

c2
P̈NL. ~2!

Assuming solutions of the form

E~r ,t !5E~r !e2 ivt1c.c., ~3!

PHYSICAL REVIEW A APRIL 1996VOLUME 53, NUMBER 4

531050-2947/96/53~4!/2792~7!/$10.00 2792 © 1996 The American Physical Society



the wave equation takes the form

¹2E1k0
2D2“~“•E!524pk0

2PNL, ~4!

wherek05v/c; we henceforth useE to denoteE(r ) rather
thanE(r ,t) @see Eq.~3!# and likewise for the other fields.
Our approach to this problem consists of four steps. First we
solve the linear problem (PNL50) to determine the wave
vectors and eigenpolarizations in the linear medium. Next we
develop a Green’s function relating the electric field to a
driving polarization and thus determine the waves generated
by the nonlinear polarization. From these solutions we derive
and solve simple first-order differential equations for the
nonlinear phase shift induced on propagation through the
material. Finally, we determine the full tensor form ofx (3)

for a layered composite and use this in our expression for the
nonlinear phase shift.

A. Linear solution

With PNL set equal to zero, the wave equation becomes

¹2E1k0
2D2“~“•E!50, ~5!

whereD5«•E and

«5S «x 0 0

0 «x 0

0 0 «z
D .

Note that thez direction is defined to be parallel to the optic
axis, so that«y5«x . The wave vectork may be decomposed
into components parallel and perpendicular to the optic axis.
For a plane-wave solution, we thus have

E~r !5Eeik'•re6 ikzz, ~6!

wherek'5(kx ,ky,0)5k'k̂' . A new unit vectorŝ[ k̂'3 ẑ is
defined to construct an orthonormal coordinate system,
where we considerk̂' fixed and real. Substituting Eq.~6!
into Eq. ~5!, we obtain the eigenvalue equation

@k0
2«2~k'

21kz
2!I #•E1~k'6kzẑ!~k'6kzẑ!•E50. ~7!

Here I is the identity matrix.
One solution, corresponding to the usuals-polarized

wave, results from an electric field of the formE5Eŝ
(D5D ŝ). For this field the second term on the left-hand side
of Eq. ~7! vanishes. Thus thez component of the wave vector
is given by6kz

s , wherekz
s5Ak02«x2k'

2 ; the complete wave
vectors are given byk6

s 5k'6kz
sẑ. The sign in the wave

vectork6
s determines whether the wave is traveling~or pos-

sibly evanescent! in the positive or negativez direction; in
all square roots we taken ImAz>0, with ReAz>0 if Im
Az50. Regardless of their traveling or evanescent character,
we refer generally to waves characterized by wave vectors of
the typek1

s as ‘‘upward traveling’’ and waves characterized
by wave vectors of the typek2

s as ‘‘downward traveling.’’
Note that our development here and below carries through
whether «x and «z are purely real or complex. For the
s-polarized waves presently being considered we define a

refractive indexns[Ak6
s
•k6

s /k0 . We find ns5A«x, inde-
pendent of the direction of propagation.

To determine the other solution, we take
E5E'k̂'1Ezẑ, corresponding to ap-polarized wave. Sub-
stitution into the eigenvalue equation~7! yields wave vectors
given by k6

p 5k'6kz
pẑ, with kz

p5Ak02«x2(«x /«z)k'
2 . For

these waves the unit vectors identifying the direction of the
displacement field are easily found to bed̂6

p

5(k'ẑ7kz
pk̂')/k0n

p, where

np[Ak6
p
•k6

p /k05F«x1S 12
«x
«z

D k'
2

k0
2G1/2

is the effective index of refraction experienced by the wave.
The direction of the electric field for these waves is not par-
allel to the displacement field, since«x and«z are in general
different. Instead it is given by«21

•d̂6
p . To simplify the

form of subsequent equations, it is convenient to work with
nonnormalized vectors identifying the electric field direction.
We define

q65~np!2«21
•d̂6

p ~8!

for the electric-field direction vectors for the upward and
downward traveling waves. Note that this expression is
equivalent to

q65~np!2F k'

«zk
p ẑ7

kz
p

«xk
p k̂'G . ~9!

We now have the homogeneous solutions for the electric
field of both the upward and downward traveling waves. To
determine the magnetic fields, we use the Maxwell equation

B5
1

ik0
“3E. ~10!

The solutions for the upward traveling waves are

E1~r !5E1
s ŝeik1

s
•r1E1

p q1e
ik1
p
•r, ~11a!

B1~r !52nsE1
s p̂1e

ik1
s
•r1npE1

p ŝeik1
p
•r ~11b!

and for the downward traveling waves are

E2~r !5E2
s ŝeik2

s
•r1E2

p q2e
ik2
p
•r, ~12a!

B2~r !52nsE2
s p̂2e

ik2
s
•r1npE2

p ŝeik2
p
•r. ~12b!

With these solutions it is a simple matter to derive the
transmission coefficients for a wave propagating from air
into the material. For the case ofs polarization the refractive
index is independent of the angle of incidence, so the result
is the standard Fresnel coefficient

ts5
2 cosu i

cosu i1nscosu t
5

2k0z
k0z1kz

s where k0z5k0cosu i .

~13!

For p polarization we assume incident and reflected fields of
the form
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Ei5E0p̂02e
2 ik0zz, Bi5E0ŝe

2 ik0zz, ~14!

Er5rE0p̂01e
ik0zz, Br5rE0ŝe

ik0zz, ~15!

wherep̂065(k'ẑ7k0zk̂')/k0 . The transmitted field is taken
from Eqs.~12a! and ~12b!:

Et5tpE0q2e
2 ikz

pz, Bt5nptpE0se
2 ikz

pz. ~16!

The Maxwell ‘‘jump’’ conditions across the interface lead to
the Fresnel transmission coefficient

tp5
2k0z«x /n

p

«xk0z1kz
p . ~17!

B. Green’s function

Our derivation of the Green’s function for this system
follows that described earlier@22#. First we restorePNL to the
Maxwell equations and use Eq.~3! to find

“3E2 ik0B50, ~18a!

“3B1 ik0D524p ik0P
NL, ~18b!

“•B50, ~18c!

“•D524p“•PNL. ~18d!

Our approach is to consider the nonlinear polarization as a
specified driving term in these equations, with the tensor«
treated initially as uniform. Since a Green’s function is sim-
ply the system impulse response, we choose the impulse to
have the form

PNL~r !5eik'•r@Pkk̂'1Pzẑ1Psŝ#d~z!. ~19!

The choice of a sheet impulse in thez50 plane reflects the
geometry of the problem of interest; the resulting Green’s
function will depend only onz and on the transverse com-
ponent of the wave vectork' . We find that we can construct
a solution of Eqs.~18! and ~19! as an electromagnetic field
consisting of an upward traveling wave in the1z half space,
a downward traveling wave in the2z half space, and an
electric impulse in the planez50. That is, we assume a
solution of the form

E~r !5u~z!E1~r !1u~2z!E2~r !1 ẑEd~z!eik'•r, ~20a!

B~r !5u~z!B1~r !1u~2z!B2~r !, ~20b!

whereu(z) is the usual step function, i.e.,u(z)50 and 1 as
z,0 and z.0, respectively. We justify the assumed form
~20! by showing that we can indeed findE1(r ), E2(r ), and
E such that Eqs.~18! and~19! are satisfied. The solution for
s polarization~i.e., with onlyPsÞ0) is essentially the same
as in an isotropic medium and follows that derived earlier
@22#. We restrict ourselves here to thep polarization, for
which the polarization impulse is of the form

PNL~r !5eik'•r@Pkk̂'1Pzẑ#d~z!5eik'•rPd~z!. ~21!

Recall from the linear calculation that the electric field for an
upward traveling wave is given by

E1~r !5E1
p q1e

ik1
p
•r ~22!

and for a downward traveling wave is given by

E2~r !5E2
p q2e

ik2
p
•r. ~23!

We substitute these expressions in the Maxwell equations
and, using the identity“u(z)5 ẑd(z), set equal the singular
parts of the equations. Simple algebra yields

E1
p 52p ik'S kpkzp «x

«z~n
p!2DPz2

2p ik0
np

Pk

5
2p ik0

2«x

kz
p~np!2

q1•P, ~24!

E2
p 5

2p ik0
2«x

kz
p~np!2

q2•P. ~25!

Therefore the electric field resulting from a polarization im-
pulse located atz50 is given by

E~r !5eik'•rE~z!, ~26!

where

E~z!5
2p ik0

2«x

kz
p~np!2

u~z!q1q1•P1
2p ik0

2«x

kz
p~np!2

u~2z!q2q2•P

2
4p

«z
d~z!ẑẑ•P.

From the relationshipE(z)5*G(k' ,z2z8)•PNL(z8)dz8,
which defines the Green’s function, we find thatG(k' ,z) is
given by

G~k' ,z!5
2p ik0

2«x

kz
p~np!2

u~z!q1q11
2p ik0

2«x

kz
p~np!2

u~2z!q2q2

2
4p

«z
d~z!ẑẑ. ~27!

We must now generalize this result to an impulse at an
arbitrary z position. Since the tensor« is assumed to be
uniform, placing the polarization impulse at an arbitraryz8
rather than atz850 simply shifts the Green’s function argu-
ment fromz to z2z8. To summarize, for

PNL~r !5PNL~k' ,z!eik'•r ~28a!

we have

E~r !5E~k' ,z!eik'•r, ~28b!

E~k' ,z!5E G~k' ,z2z8!•PNL~k' ,z8!dz8, ~28c!

where the Green’s function ~including now the
s-polarization part! is given by
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G~k' ,z2z8!52p ik0
2u~z2z8!F ŝŝkzseikzs~z2z8!

1
«x

kz
p~np!2

q1q1e
ikz
p
~z2z8!G12p ik0

2u~z82z!

3F ŝŝkzseikzs~z82z!1
«x

kz
p~np!2

q2q2e
ikz
p
~z82z!G

2
4p

«z
ẑẑd~z2z8!. ~29!

C. Nonlinear phase shift

The complete solution~homogeneous plus particular! for
the electric field in this system is

E~r !5E~z!eik'•re2 ivt, ~30a!

E~z!5E01
s ŝeikz

sz1E02
s ŝe2 ikz

sz1E01
p q1e

ikz
pz1E02

p q2e
2 ikz

pz

1
2p ik0

2

kz
s ŝŝ•E

2`

z

eikz
s
~z2z8!PNL~z8!dz81

2p ik0
2

kz
s ŝŝE

z

`

e2 ikz
s
~z2z8!PNL~z8!dz8

1
2p ik0

2«x

kz
p~np!2

q1q1E
2`

z

eikz
p
~z2z8!PNL~z8!dz81

2p ik0
2«x

kz
p~np!2

q2q2E
z

`

e2 ikz
p
~z2z8!PNL~z8!dz82

4p

«z
ẑẑ•PNL~z!. ~30b!

This may be divided into four parts corresponding to thes
and p polarization of the upward and downward traveling
waves. Based on the geometry of the problem at hand~Fig.
1!, we will be concerned only with waves traveling in the
downward direction. For these waves it is readily seen that

E2
s ~z!5E02

s 1
2p ik0

2

kz
s ŝ•E

z

`

eikz
sz8PNL~z8!dz8, ~31!

E2
p ~z!5E02

p 1
2p ik0

2«x

kz
p~np!2

q2•E
z

`

eikz
pz8PNL~z8!dz8. ~32!

We convert these integral equations into differential equa-
tions

dE2
s

dz
52

2p ik0
2

kz
s eikz

szŝ•PNL~z!, ~33!

dE2
p

dz
52

2p ik0
2«x

kz
p~np!2

eikz
pzq2•P

NL~z!. ~34!

The nonlinear driving polarization is given by

PNL~r !5x~3!~v5v1v2v!AE~r !E~r !E* ~r !. ~35!

Consider first the case of ans-polarized wave. We assume a
solution for the electric field that has a constant amplitude,
but experiences a phase shift due to the nonlinear polariza-
tion:

E2
s ~z!5tsE0e

2 ifNL~z!, ~36!

whereE0 is the electric-field amplitude of a wave incident on
the composite through air andts is the transmission coeffi-
cient for s-polarized light. Substituting this expression into
Eqs.~33! and ~35!, we obtain

tsE0S 2 i
dfNL

dz De2 ifNL~z!52
2p ik0

2

kz
s eikz

szŝ•PNL~z! ~37!

and

PNL~z!5x~3!~v5v1v2v!A ŝŝŝ~ tsE0!
3e2 ikz

sze2 ifNL~z!.
~38!

Combining these expressions, we find

dfNL

dz
5
2pk0

2

kz
s ŝ•x~3!~v5v1v2v!A ŝŝŝ~ tsE0!

2. ~39!

FIG. 1. Plane wave incident on uniaxial medium.
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If the sample thickness isl , then the total nonlinear phase
shift imparted on the wave is

fNL~2 l !52
2pk0

2l

kz
s ŝ•x~3!~v5v1v2v!A ŝŝŝ~ tsE0!

2.

~40!

For p polarization the steps are the same. Assuming that
the electric field is given by

E2
p ~z!5tpE0e

2 ifNL~z!, ~41!

we find the following differential equation for the nonlinear
phase shift:

dfNL

dz
5
2pk0

2«x

kz
p~np!2

q2•x
~3!~v5v1v2v!Aq2q2q2~ tpE0!

2.

~42!

The solution of this equation is

fNL~2 l !52
2pk0

2«xl

kz
p~np!2

q2•x
~3!~v5v1v2v!Aq2q2q2~ tpE0!

2. ~43!

Equations~40! and ~43! are the main results of this section.
They give us explicit expressions for the nonlinear phase
shift a plane wave experiences on passing through a uniaxial
material.

D. Tensorx „3… for a layered composite

To make use of Eqs.~40! and~43!, one final step must be
performed: the full tensor form of the effective third-order
susceptibility of a layered composite must be determined.
From Ref.@20# we know that the diagonal components of the
nonlinear susceptibility are

xxxxx
~3! 5xyyyy

~3! 5 f ax1111
a 1 f bx1111

b , ~44a!

xzzzz
~3! 5 f aU«eff,z«a

U2S «eff,z
«a

D 2x1111
a 1 f bU«eff,z«b

U2S «eff,z
«b

D 2x1111
b .

~44b!

These results assume isotropic constituent materialsa and
b. For our problem, we may make additional simplifying
assumptions. First, the constituents are considered to be non-
absorbing, so that«a and«b are real. Second, only one of the
constituents is assumed to be nonlinear, i.e.,x i jkl

b 50. Finally,

we assume that the nonlinearity of materiala is electronic in
nature. These assumptions imply that

x1111
a 5x2222

a 5x3333
a , ~45a!

x1221
a 5x1212

a 5x1122
a 5•••5 1

3x1111
a . ~45b!

Therefore Eqs.~44! may be rewritten in the following man-
ner:

xxxxx
~3! 5xyyyy

~3! 5 f ax1111
a , ~46a!

xzzzz
~3! 5 f aS «eff,z

«a
D 4x1111

a . ~46b!

The off-diagonal components can be deduced trivially from
the analysis given in Ref.@20#. The number of local field
correction factors appearing in any component ofx (3) equals
the number of times thez component of the electric field
appears in the term for the polarization. Thus we have

xxzzx
~3! 5xxzxz

~3! 5•••5 1
3 f aS «eff,z

«a
D 2x1111

a . ~47!

With these results we may determine the values of the tensor
terms in Eqs.~40! and ~43!. They are

ŝ•x~3!~v5v1v2v!A ŝŝŝ5 f ax1111
a , ~48a!

q2•x
~3!~v5v1v2v!Aq2q2q25 f aS « eff,z

«a
D 4~qz!4x1111

a

1 f a~qx!
4x1111

a 12 f aS «eff,z
«a

D 2~qzqx!2x1111
a .

~48b!

This completes the theoretical formalism.
Let us discuss the implications of these results. Consider

first the case of ans-polarized wave. The angular depen-
dence offNL arises solely from the transmission coefficient
ts and thez component of the wave vector,kz

s , i.e., fNL

}(ts)2/kz
s . This expression decreases monotonically with in-

creasing angle of incidenceu i , so the nonlinear phase shift
also decreases monotonically withu i .

For the case of ap-polarized wave we have additional
angularly dependent terms due to the tensor nature ofx (3).
These terms may lead to qualitatively different behavior: if
the local field correction factor is greater than unity, the mag-
nitude of the effective nonlinearity increases with increasing
angle, while the transmitted electric field energy density de-
creases with increasing angle. Since the decrease of the
transmitted energy density with increasing angle is very
small near normal incidence, the nonlinear phase shift will
typically increase at first. For larger angles the transmission
coefficient will dominate the other angular effects andfNL

will decrease. Thus the curve will exhibit a peak whose po-
sition is critically dependent on the relative magnitudes of
the two effects, i.e., on the tensor nature ofx (3) and the
linear optical properties of the material. Behavior of this sort
is shown in the next section, which summarizes our experi-
mental results.

FIG. 2. PBZT–titanium dioxide composite.
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III. EXPERIMENT

We have constructed layered composite samples consist-
ing of alternating layers of titanium dioxide and the conju-
gated polymer poly (p-phenylenebenzobisthiazole! ~PBZT!.
~See Fig. 2.! Samples were formed by spin casting alternat-
ing layers of the materials onto glass substrates. The TiO2
layers were spin cast from a sol-gel precursor@23# and cured
for 24 h at 200 °C, which yielded a linear refractive index of
2.260.1. To determine the linear refractive indices of the
TiO2 , as well as that of the PBZT, thick (;1 mm! single
layers were prepared and measured using a spectrophotom-
eter. The sample transmission data exhibited a fringe pattern,
which was used to determine the refractive index at wave-
lengths corresponding to the transmission peaks. These indi-
ces were fit to a Sellmeier equation, which was then used to
determine the linear refractive index at the experimental
wavelength of 1.9mm. The PBZT was spin cast from an
isotropic solution in nitromethane-AlCl3 , washed in metha-
nol, and dried for 24 h under vacuum at 70 °C@24#. Its linear
refractive index was 1.860.05. The quoted uncertainty is
due to the uncertainty in the thickness of the measured
samples and to the differences in the heat treatment of the
different samples. The third-order susceptibility of TiO2 is
approximately 10213 esu @25#, which is several orders of
magnitude smaller than that of PBZT. (x522.7310210

esu.! Therefore, for the purpose of our theoretical analysis it
is reasonable to assume that the material consists of one non-
linear component and one linear component. The individual
layer thicknesses in the composite were 50 nm for the TiO2
and 40 nm for the PBZT. These thicknesses correspond to a
fill fraction of 44.4% for the PBZT, which is near the ideal
fill fraction given the linear parameters. The maximum en-
hancement ofx (3) expected for this composite is approxi-
mately 35%.

The experimental setup, shown in Fig. 3, is a typical
z-scan setup @26#. The 30-ps output pulses from a
Q-switched, mode-locked Nd:YAG laser~where YAG de-
notes yttrium aluminum garnet! were Raman shifted by a
high-pressure hydrogen cell, producing pulses with a wave-
length of 1.9mm and pulse energy of approximately 200
mJ. These pulses were focused by a 30-cm focal length lens
and detected in the far field through a 2-mm-diam aperture.
Part of the energy was split off before the lens and was used

as a reference. A computer selected pulses within a reference
energy window and averaged between 50 and 100 shots for
eachz position of the sample.

The result of az scan is a dispersive shaped curve of
transmittance versus sample position. It is shown in Ref.@26#
that for a thin sample and a small aperture, the change in the
normalized transmittance from the peak of the curve to the
valley (DTpv) is directly proportional to the nonlinear phase
shift imparted on the beam, i.e.,

DTpv50.406uDF0u where DF05k0n2IL eff .

As stated previously, the sample was oriented at various
angles with respect to the beam axis. The results of the mea-
surements are shown in Fig. 4. The vertical axis represents
the normalized value ofDTpv . The solid dots are the actual
data points and the solid lines show the best-fit theoretical
predictions. For these lines the rationa /nb51.33 was used.
This value is slightly higher than the expected ratio of 1.22,
but is still reasonable given the uncertainties in the refractive
indices of spin cast materials. The dashed line shows the
prediction in the artificial case in which local field effects are
assumed not to enhance the nonlinearity for thep polariza-
tion. This line decreases monotonically and thus cannot fit
the data. The good agreement between the data and the theo-
retical lines indicates that local field effects do play an im-
portant role and enhance the nonlinear susceptibility.

Another possible explanation for the observed angular de-
pendence of the nonlinear phase shift would be an anisotropy
of the polymer layers; the nonlinear susceptibility could be
larger in the normal direction due to molecular orientation.
~However, for a rigid rod polymer such as PBZT, spin cast-
ing is more likely to produce an anisotropy with the larger
nonlinearity in the plane of the material.! To demonstrate that
this is not the case for our composites, thin single-layer
samples of the polymer were cast and then measured in our
z-scan setup. The results are represented by the open dots in
Fig. 4. Notice that these points follow the dashed curve,
which is the theoretical prediction forp-polarized light inci-

FIG. 3. Experimental setup. FIG. 4. Measured nonlinear response of the PBZT-titanium di-
oxide composite for boths- andp-polarized light~solid dots! and of
pure PBZT forp-polarized light~open dots!. The solid curves show
the theoretical predictions and the dashed curve shows the expected
behavior if there is no local field enhancement ofx (3).
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dent on an isotropic material without local field effects.
These results demonstrate that our polymer layers are isotro-
pic.

IV. CONCLUSION

In summary, we have derived an expression predicting the
results for az-scan measurement of a uniaxial material~with
optic axis normal to the surface! oriented at arbitrary angle
with respect to the beam axis. We have then applied this
result to the effective-medium representation of layered com-
posite materials. We have constructed layered composites out
of titanium dioxide and the conjugated polymer PBZT and
have measured their nonlinear optical response in az-scan
setup. Good agreement between experimental data and the

theory has been found, indicating the accuracy of the effec-
tive medium predictions.
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